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Let V be a finite-dimensional R-vector space, and set n := dim V . For any
k ∈ {1, ..., n− 1}, Gk(V ) is the set of all k-dimensional subspaces of V .

In Example 1.36 of John M. Lee’s Introduction to Smooth Manifolds, the
author presents a detailed example describing a smooth manifold structure on
Gk(V ), using the Smooth Manifold Chart Lemma. Here we clarify how the
charts are defined, and show that they are smoothly compatible. The charts will
be defined as bijections between subsets of Gk(V ) and all of M(k× (n− k),R),
which for our purposes is close enough to Rk(n−k) to satisfy the definition of
a manifold (though of course it is trivial to make such charts into honest-to-
goodness maps to Rk(n−k), e.g. by concatenating the rows of a matrix to make
a single row).

Central to the construction is the following elementary set-theoretic fact
about functions X → Y viewed as a particular kind of relation, i.e. as a partic-
ular kind of subset of X × Y . The proof is left to the reader.

Lemma 1. Let X and Y be sets, and let πX : X×Y → X be the canonical pro-
jection associated with the direct product. Then a subset R ⊆ X × Y represents
a function X → Y iff πX |R is a bijection. �

Products (and their projections) are ubiquitious in mathematics. In the
category of vector spaces, the property that the restriction of a projection to
a subobject is a bijection (equivalently, an isomorphism) is related to another
important property, on which the smooth structure of Gk(V ) is based. Before
we explain this, however, we first make a comment about direct sums and direct
products of vector spaces. These are not the same thing, but the distinction
between finite direct products and finite direct sums is subtle, and while there
are some situations in which that distinction is important and/or useful, it has
no bearing on what we are discussing here. Thus we will make no distinction
between the direct product V ×W and the direct sum V ⊕W of two vector
spaces.

Definition. Let V be a vector space and Q ⊆ V a subspace. A complement of
Q in V is a subspace S ⊆ V with the property that V is the internal direct sum
of S and Q. That is, S ∩Q = 0, and S +Q = V .

Lemma 2. Let V be a vector space, and suppose V is an internal direct sum
P ⊕ Q. Let πP : V → P be the canonical projection; then for any subspace
S ⊆ V , S ∩Q = 0 iff πP |S is injective, and S +Q = V iff πP |S is surjective.
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Proof. Ker πP |S = S ∩ Ker πP = S ∩ Q, so S ∩ Q = 0 iff πP |S is injective. If
πP |S is surjective, then for any p ∈ P there is q ∈ Q with p + q ∈ S; it follows
that P ⊆ S + Q and hence S + Q = V . Conversely if S + Q = V then for any
p ∈ P there are s ∈ S and q ∈ Q with s+ q = p; thus πP s = πP (p− q) = p, and
therefore πP |S is surjective.

Corollary. S ⊆ V is a complement of Q iff πP |S is an isomorphism. �

We now have two ways of thinking about subsets S ⊆ P × Q having the
property that πP |S is a bijection. Lemma 1 relates such subsets to functions
P → Q, while Lemma 2 relates subspaces with this property to complements
of Q. As it turns out, it we restrict our attention to subspaces in Lemma 1, we
can “connect” these two relations. First, we have the following result, whose
proof is left to the reader.

Lemma 3. In Lemma 1, if P ×Q is a direct product of vector spaces, then the
subset S is a subspace iff the corresponding function P → Q is linear. �

This leads us to the main result we need:

Proposition. Let V be a vector space, and suppose V is an internal direct sum
P ⊕Q. Then there is a bijection between the set of complements of Q in V and
the set L(P,Q) of linear maps P → Q.

Proof. Using the above results, we immediately get the following equivalences
for a subset S ⊆ V :

S is a complement of Q ⇐⇒ S is a subspace and πP |S is an isomorphism

⇐⇒ S is a subspace and πP |S is a bijection

⇐⇒ S is a subspace, and represents a function P → Q

⇐⇒ S represents a linear function P → Q.

Remark. Note that none of the above results require that P or Q be finite-
dimensional; moreover they are valid for any base field, and in fact (by the
same proof) for any module over an arbitrary ring (replacing “subspace” with
“submodule” everywhere).

To define a chart on Gk(V ), we start by fixing a decomposition P ⊕Q of V
with dim P = k, along with specific bases EP := {e1, ..., ek} of P and EQ of
Q (we don’t need to explicitly name the elements of EQ). The domain of our
chart is

UQ := {S ⊆ V : S is a complement of Q}.

By the Corollary, any such S has dimension k; thus UQ ⊆ Gk(V ). The chart ϕ
determined by P , Q, EP and EQ is the composite of the map γ : UQ → L(P,Q)
given by the Proposition, and the (linear) map R : L(P,Q)→M((n−k)×k,R)
taking σ ∈ L(P,Q) to its (EP , EQ)-matrix representation. Note that γ depends
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only on the decomposition P⊕Q, while R depends on the choice of bases EP and
EQ. Since γ and R are both bijections, the image of ϕ is all of M((n−k)×k,R),
so (i) of Lemma 1.35 is satisfied.

In order to compute the transition maps between a pair of such charts, we
need to know how to go in the opposite direction. This is done as follows: given
M ∈ M(k × (n − k),R), let σ : P → Q be the corresponding linear map (i.e.
σ := R−1M). By definition, the ith column of M is the EQ-representation of
σei. Thus the ith column of the n× k matrix[

Ik
M

]
represents (ei, σei). These are all elements of the corresponding subspace S;
moreover, there are k of them and they are clearly linearly independent, so they
form a basis of S (this is essentially the content of Problem 1-10 in Lee’s book).

Now consider another chart on Gk(V ), defined by a decomposition P ′ ⊕Q′
of V with dim P ′ = k, and bases EP ′ := {e′1, ..., e′k} for P ′ and EQ′ for Q′. To
satisfy part (ii) of Lemma 1.35, we must show that ϕ(UQ∩UQ′) is an open subset
of M((n−k)×k,R). Fix S ∈ UQ, then S ∈ UQ′ iff S is also a complement of Q′.
By Lemma 2, this is true iff πP ′ |S is an isomorphism. Since dim P ′ = k = dim S,
this is true iff πP ′ |S is surjective, that is if πP ′S = P ′. Setting M := ϕS, we
know the columns of the matrix

[
Ik
M

]
are an E-basis for S. To compute πP ′S,

let F be the change-of-basis matrix between E and E′; this is a constant matrix
(i.e. it depends only on the bases E and E′). Then the columns of

F

[
Ik
M

]
are an E′-basis for S, and therefore πP ′S is spanned by the columns of the k×k
matrix

G :=
[
Ik 0

]
F

[
Ik
M

]
.

(Here the 0 in the first matrix is the k× (n− k) zero matrix.) And the columns
of G span P ′ iff G has full rank, equivalently det G 6= 0.

Now the entries of G are polynomials in the entries of M , so the map M 7→ G
is continuous, and therefore the map M 7→ det G is also continuous. Then
ϕ(UQ ∩ UQ′) is the inverse image of the open set R− {0} under this map, so it
is open.

Now let ψ be the chart defined by P ′, Q′, EP ′ and EQ′ above; we next
show that the transition map ψ ◦ ϕ−1 is smooth. We start with a matrix M ∈
M(k×(n−k),R) whose image lies in UQ∩UQ′ ; that is, it is a complement of both
Q and Q′. We apply the reverse procedure above to get a basis for S of the form
{(ei, σei)}. We then need to compute the (EP ′ , EQ′)-matrix representation of
the linear map σ′ : P ′ → Q′ corresponding to S ⊆ P ′⊕Q′. This is equivalent to
transforming the columns of the matrix

[
Ik
M

]
representing the vectors (ei, σei)

in the basis E into a matrix of the same form whose columns represent a basis
for S in the basis E. How do we do this?
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Well, we can translate the basis {(ei, σei)} ⊆ P ⊕Q into some basis in terms
of the decomposition P ′ ⊕Q′ simply by applying the change-of-basis matrix F .
Thus F

[
Ik
M

]
is an n× k matrix whose columns are an E′-basis for S. To get a

basis of the desired form, we perform column operations on this matrix to get
the identity matrix at the top, i.e. until our matrix has the form[

Ik
M ′

]
.

We know we can do this because S is a complement of Q′, and thus it has a
basis whose elements have the form (e′i, σ

′e′i) with respect to P ′ ⊕ Q′, and the
E′-representation of such elements yields a matrix of the above form.

The required column operations are effected by right multiplication by a
k × k invertible matrix H, so after doing this we get

F

[
Ik
M

]
H =

[
Ik
M ′

]
.

Since right multiplication by H yields the identity matrix in the top k rows of
this matrix, H is in fact the inverse of the k×k submatrix at the top of F

[
Ik
M

]
,

which is just the matrix G defined above. That is, H = G−1. Now we already
know that the entries of G are polynomials in the entries of M , and therefore
(by Cramer’s rule) the entries of H are rational functions in the entries of M ,
and finally the entries of [

Ik
M ′

]
= F

[
Ik
M

]
H

are likewise rational functions in the entries of M .
Summarizing: we can explicitly write down the value of the transition map

on a matrix M as follows:

ψ ◦ ϕ−1(M) =
[
0 In−k

]
F

[
Ik
M

]([
Ik 0

]
F

[
Ik
M

])−1
.

(The leftmost matrix extracts the bottom n− k rows of the rest of the expres-
sion.) It follows that the transition map ψ ◦ ϕ−1 : M 7→ M ′ is smooth, so (iii)
of Lemma 1.35 is satisfied.

Note: we can relate this computation to Lee’s proof by observing that the
maps

A := πP ′ |P , B := πQ′ |P , C := πP ′ |Q and D := πQ′ |Q
are just the components of the “change-of-decomposition” map between the
decomposition P ⊕ Q and P ′ ⊕ Q′; here we have broken these down further
into the change-of-basis matrix F between E and E′. That is, if we think of
A, B, C and D as matrix representations of these maps with respect to the
corresponding bases, then F can be expressed as the following block matrix.

F =

[
A C
B D

]
.
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And indeed, if we substitute this in the expression for ψ ◦ ϕ−1(M) above, we
get

ψ ◦ ϕ−1(M) =
[
0 In−k

] [A C
B D

] [
Ik
M

]([
Ik 0

] [A C
B D

] [
Ik
M

])−1
=

[
B D

] [Ik
M

]([
A C

] [Ik
M

])−1
= (B +DM)(A+ CM)−1,

which is exactly the expression appearing in Lee’s example.
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